Organic & Medicinal Chemistry

Synthesis of Peptides & Peptidomimetics

Our lab utilizes a suite of synthesizers, included the fully automated Liberty Blue, to synthesize novel ligands and peptide libraries that we utilize as tools to achieve a molecular understanding of GPCRs.

We aim to discover molecules that can be used to probe the mechanisms of these receptors in various pathophysiological states and to streamline the development of those molecules as therapeutic agents. We design and synthesize templates based on small molecules, peptides, & peptidomimetics that include an ever-expanding library of non-canonical amino acids. Our synthetic strategies involve multi-step organic syntheses, microwave-assisted techniques, and traditional solid-phase peptide synthesis using automated, semi-automated, and manual synthesizers. The lead optimization and structure-activity studies generally use focused-library design or high throughput screening approaches.

Selected Publications

γ2-Melanocyte stimulation hormone (γ2-MSH) truncation studies results in the cautionary note that 2-MSH is not selective for the mouse MC3R over the mouse MC5R

Abstract

The melanocortin system has been implicated in a multitude of physiological pathways including obesity, satiety, energy homeostasis, sexual behavior, pigmentation, sodium regulation, hypertension, and many others. Based upon studies of the endogenous melanocortin receptor agonists at the cloned human melanocortin receptor proteins, it was concluded that the γ-MSH related agonist ligands are selective for the MC3 versus the MC4 and MC5 receptors. In attempts to understand and identify the specific amino acids of γ2-MSH important for MC3R selectivity, we have performed N- and C-terminal truncation studies and pharmacologically characterized twenty-eight ligands at the mouse MC1 and MC3-5 melanocortin receptors. The C-terminal Trp-Asp9-Arg10-Phe11 residues are important for nM potency at the mMC3R and the Arg7-Trp8 residues are important for mMC5R nM potency. We observed the unanticipated results that several of the C-terminal truncated analogs possessed nM agonist potency at the mMC3 and mMC5Rs which lead us to perform a comparative side-by-side study of the mouse and human MC5R. These data resulted in μM γ2-MSH analog potency at the hMC5R, consistent with previous reports, however at the mMC5R, nM γ2-MSH analog potency was observed. Thus, these data support the hypothesis of important species specific differences in γ-MSH related ligand potency at the rodent versus human MC5R subtype that is critical for the interpretation of in vivo rodent physiological studies. These results prompted us to examine the affects of a peripherally administered melanocortin agonist on hypothalamic gene expression levels of the MC3R, MC4R, and MC5R. The super potent non-selective NDP-MSH agonist was administered i.p. and resulted in significantly decreased levels of mMC3R and mMC5R hypothalamic mRNA versus saline control. These data provide for the first time data demonstrating peripherally administered NDP-MSH can modify hypothalamic melanocortin receptor expression levels.

DOI: 10.1016/j.peptides.2010.08.025

Discovery of a β-Hairpin Octapeptide, c[Pro-Arg-Phe-Phe-Dap-Ala-Phe-DPro], Mimetic of Agouti-Related Protein(87–132) [AGRP(87–132)] with Equipotent Mouse Melanocortin-4 Receptor (mMC4R) Antagonist Pharmacology

Abstract

Agouti-related protein (AGRP) is a potent orexigenic peptide that antagonizes the melanocortin-3 and -4 receptors (MC3R and MC4R). While the C-terminal domain of AGRP, AGRP(87–132), is equipotent to the full-length peptide, further truncation decreases potency at the MC3R and MC4R. Herein, we report AGRP-derived peptides designed to mimic the active β-hairpin secondary structure that contains the hypothesized Arg-Phe-Phe pharmacophore. The most potent scaffold, c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-DPro], comprised the hexa-peptide β-hairpin loop from AGRP cyclized through a DPro–Pro motif. A 20 compound library was synthesized from this scaffold for further structure–activity relationship studies. The most potent peptide from this library was an asparagine to diaminopropionic acid substitution that possessed sub-nanomolar antagonist activity at the mMC4R and was greater than 160-fold selective for the mMC4R versus the mMC3R. The reported ligands may serve as probes to characterize the melanocortin receptors in vivo and leads in the development of novel therapeutics.

DOI: 10.1021/acs.jmedchem.5b00184

Focused Combinatorial Libraries

Our lab has a long-standing collaboration with Florida International University (formerly the Torrey Pines Institute) that enables us to screen large peptide-based combinatorial libraries using our in-house cell based assays to identify novel ligands for GPCRs. These mixture-based libraries enable us to identify single lead compounds from mixtures containing thousands to hundreds of thousands of representative compounds through positional scanning. We are then able to fully characterize those leads and test them in vivo to ascertain their physiological effect.

Figure generated with BioRender

Selected Publications

Discovery of Nanomolar Melanocortin-3 Receptor (MC3R)-Selective Small Molecule Pyrrolidine Bis-Cyclic Guanidine Agonist Compounds Via a High-Throughput “Unbiased” Screening Campaign


Abstract

The central melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are key regulators of body weight and energy homeostasis. Herein, the discovery and characterization of first-in-class small molecule melanocortin agonists with selectivity for the melanocortin-3 receptor over the melanocortin-4 receptor are reported. Identified via “unbiased” mixture-based high-throughput screening approaches, pharmacological evaluation of these pyrrolidine bis-cyclic guanidines resulted in nanomolar agonist activity at the melanocortin-3 receptor. The pharmacological profiles at the remaining melanocortin receptor subtypes tested indicated similar agonist potencies at both the melanocortin-1 and melanocortin-5 receptors and antagonist or micromolar agonist activities at the melanocortin-4 receptor. This group of small molecules represents a new area of chemical space for the melanocortin receptors with mixed receptor pharmacology profiles that may serve as novel lead compounds to modulate states of dysregulated energy balance.

DOI: 10.1021/acs.jmedchem.0c02041

Discovery of Polypharmacological Melanocortin-3 and -4 Receptor Probes and Identification of a 100-Fold Selective nM MC3R Agonist versus a μM MC4R Partial Agonist


Abstract

The centrally expressed melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R, respectively) are established targets to treat diseases of positive- and negative-energy homeostasis. We previously reported [Doering, S. R.; J. Med. Chem. 2017, 60, 4342−4357] mixture-based positional scanning approaches to identify dual MC3R agonist and MC4R antagonist tetrapeptides. Herein, 46 tetrapeptides were chosen for MC3R agonist screening selectivity profiles, synthesized, and pharmacologically characterized at the mouse melanocortin-1, -3, -4, and -5 receptors. Substitutions to the tetrapeptide template were selected solely based on MC3R agonist potency from the mixture-based screen. This study resulted in the discovery of compound 42 (Ac-Val-Gln-(pI)DPhe-DTic-NH2), a full MC3R agonist that is 100-fold selective for the MC3R over the μM MC4R partial agonist pharmacology. This compound represents a first-in-class MC3R selective agonist. This ligand will serve as a useful in vivo molecular probe for the investigation of the roles of the MC3R and MC4R in diseases of dysregulated energy homeostasis.

DOI: 10.1021/acs.jmedchem.9b00053